THREE-QUANTA POSITRON ANNIHILATION IN BLOOD SAMPLES OF DIFFERENT OXYGENATION LEVELS

MARY CHIN & NICHOLAS SPYROU

Department of Physics, University of Surrey, Guildford GU2 7XH, UK
THREE-QUANTA
POSITRON ANNIHILATION

1. WHY
2. CONTROVERSIES
3. HOW
THREE-QUANTA POSITRON ANNHIHILATION

Used in material science but not medical imaging

Positron Emission Tomography (PET) currently is based on TWO-QUANTA annihilations only
THREE-QUANTA

POSITRON ANNIHILATION

Attractions:

1. Image reconstruction without backprojection

2. Molecular imaging without dedicated radiopharmaceutical or contrast agent
2γ PET

IMAGE RECONSTRUCTION

By conservations of energy & momentum

KNOWN

\[(E_1, \alpha_1) \]

\[(E_2, \alpha_2) \]

\[(E_3, \alpha_3) \]

UNKNOWN

\[(x_1, y_1, z_1) \]

solve simultaneous eqs

WE HAVE TO BACK-PROJECT COZ WE DON’T KNOW AT WHICH POINT THE ANNIHILATION HAPPENED

LINE OF RESPONSE

3γ PET

POINT OF RESPONSE

By conservations of energy & momentum
An electron (e^+) can annihilate directly or form positronium.

- **Annihilation directly**:
 - 70% to 2γ
 - 30% to 3γ

- **Form positronium**:
 - 99.7% to 2γ
 - 0.27% to 3γ

Conventional PET:
- 25% to 2γ
- 75% to 3γ

Ortho-positronium:
- 25% to 2γ
- 75% to 3γ
annihilate directly

AGENTS eg O₂, NO, CO₂

oxygenation

form positronium

QUENCHING

INHIBITION

PROSPECTS FOR MOLECULAR IMAGING
MEASURE $\frac{3\gamma}{2\gamma}$ YIELD

FIND OUT O_2 IN BODY TISSUES?

PROSPECTS FOR MOLECULAR IMAGING
Three-Gamma Annihilation Imaging in Positron Emission Tomography

Krzysztof Kacperski*, Nicholas M. Spyrou, and F. Alan Smith

Abstract—It is argued that positron annihilation into three photons, although quite rare, could still be used as a new imaging modality of positron emission tomography. The information gained when the three decay photons are detected is significantly higher than in the case of 511 keV two-gamma annihilation. The performance of three-gamma imaging in terms of the required detector properties, spatial resolution and counting rates is discussed. A simple proof-of-principle experiment confirms the feasibility of the new imaging method.

Index Terms—Positron emission tomography, three-gamma annihilation.
Three-gamma imaging is potentially more powerful than standard PET because each event bears the complete position information enabling the localization of the activity distribution without use of back-projection tomographic techniques. However, only a subfraction of the three-photon events are usable as each photon energy must be above the detection threshold and only total energy deposition events can used, as a tight total energy window and time window (<5 ns) must be applied (for typical source strengths used in imaging) to reduce the strong background from two-photon decay pile-up events. However, these conditions can be met with high-resolution semiconductor detectors as pointed out in Kacperski and Spyrou (2005), and construction of a detection system with the required attributes for such studies is not beyond the reach of current technology.

The present work answers one question raised by Kacperski and Spyrou (2005) concerning the potential biological sensitivity of the three-photon imaging. Unfortunately, one should not expect any sensitivity to the level of dissolved O₂. Our results indicate that the overall three-photon yield is about 0.5% in all samples. These conclusions assume that the direct three-photon yield is identical to that for free e⁻-s. Only direct measurement of the three-photon yield can determine if this assumption is correct (Seweryniak 2006).
Table 1. The delayed (F_3^{de}) and total (F_3) three-photon yields as well as the fit parameters (K_p and K_{cap}/λ_d) for the various liquid samples (HSA is for human serum albumin).

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxygen</th>
<th>F_3^{de} (%)</th>
<th>F_3 (%)</th>
<th>K_p (ns$^{-1}$)</th>
<th>$R = K_{cap}/\lambda_d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso-octane</td>
<td>Low</td>
<td>0.58</td>
<td>0.85</td>
<td>1.34</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.39</td>
<td>0.65</td>
<td>2.27</td>
<td>2.06</td>
</tr>
<tr>
<td>Water</td>
<td>Low</td>
<td>0.26</td>
<td>0.52</td>
<td>2.77</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.25</td>
<td>0.51</td>
<td>2.84</td>
<td>3.07</td>
</tr>
<tr>
<td>Saline</td>
<td>Low</td>
<td>0.24</td>
<td>0.51</td>
<td>2.86</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.24</td>
<td>0.51</td>
<td>2.98</td>
<td>3.07</td>
</tr>
<tr>
<td>HSA</td>
<td>Low</td>
<td>0.25</td>
<td>0.51</td>
<td>2.64</td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.25</td>
<td>0.51</td>
<td>2.95</td>
<td>2.96</td>
</tr>
<tr>
<td>Blood</td>
<td>Venous</td>
<td>0.25</td>
<td>0.52</td>
<td>2.86</td>
<td>3.02</td>
</tr>
</tbody>
</table>

The present work answers one question raised by Kacperski and Spyrou (2005) concerning the potential biological sensitivity of the three-photon imaging. Unfortunately, one should not expect any sensitivity to the level of dissolved O$_2$. Our results indicate that the overall three-photon yield is about 0.5% in all samples. These conclusions assume that the direct three-photon yield is identical to that for free e$^-$s. Only direct measurement of the three-photon yield can determine if this assumption is correct (Seweryniak 2006).
DATA TO BE PRESENTED HERE

The GAMMASPHERE detector system when it was stationed at Argonne National Laboratory

4π array of 110 Compton-suppressed high-purity germanium detectors (HPGe)

Experiment carried out by Dr K Kacperski when he was employed as a postdoc at the University of Surrey
GAMMASPHERE: AN UNPRECEDENTED LUXURY FOR US

LUXURY #1 NEAR-4π SOLID ANGLE

LUXURY #2 MULTI-DIMENSIONAL DATA WRITTEN OUT

GAMMASPHERE information, EVENT DATA RECORD

The EVENT DATA RECORD consists of a header and data as:

typedef struct event_buffer
{
 u_short RecordType; /* 0 event data type= 3 */
 u_short RecordLength; /* 1 number of bytes in this record */
 u_short RecordVer; /* 2 record version or subtype */
 u_short HeaderBytes; /* 3 number of bytes in header */
 u_short EffNumber; /* 4 eff processor number */
 u_short StreamID; /* 5 event stream ID */
 u_short EffSequence; /* 6 eff sequence number */
 u_short ModeFlags; /* 7 event format flags */
 u_short DataLength; /* 8 number of i*2 data words */
 u_short ChecksumType; /* 9 type of checksum */
 u_short Checksum; /* 10 checksum value */
 u_short EventData[EB_SIZE]; /* event data area */
} EVENT_BUFFER;
GAMMASPHERE: AN UNPRECEDENTED LUXURY FOR US

LUXURY #1 NEAR-4π SOLID ANGLE

LUXURY #2 MULTI-DIMENSIONAL DATA WRITTEN OUT

GAMMASPHERE: EVENT PROCESSING CONTROL BITS

DATA
1 gcmode gain correction on/off
2 tmmode time veto on/off
3 hmode adjacent detector veto on/off

The EVENT DATA CONTROL BITS FOR EACH DETECTOR

typedef
4 writeget output ge time on/off
 { 5 writegef output full ge data on/off
 6 writebgo output of BGO data on/off
 } */
 u_s */

BIT - EVENT DATA CONROL BITS FOR EACH EVENT

 u_s 7 writeallge output of dirty ge data on/off */
 u_s 8 writeallbgo output of clean bgo data on/off */

 u_s 9 writeIsomerTag */
 u_s 10 rf_timing ge times calculated vs rf pulses (subtract tac2 on the fly) */
 u_s

BIT - MISC

EVENT_BUFFER;
GAMMASPHERE: AN UNPRECEDENTED LUXURY FOR US

LUXURY #1 NEAR-4π SOLID ANGLE

LUXURY #2 MULTI-DIMENSIONAL DATA WRITTEN OUT
GAMMASPHERE: AN UNPRECEDENTED LUXURY FOR US

LUXURY #1 NEAR-4π SOLID ANGLE

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Hex Value</th>
<th>Binary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hpid bgo hit pattern</td>
<td>0xe00</td>
<td>1111111000000000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>and ge hit bit</td>
<td>0x100</td>
<td>0000000100000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and id register</td>
<td>0x0ff</td>
<td>0000000011111111</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ge_high 14 bit high res ge</td>
<td>0x3ff</td>
<td>0011111111111111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and over-range bit</td>
<td>0x400</td>
<td>0100000000000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Pileup bit</td>
<td>0x800</td>
<td>1000000000000000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ge_side 12 bit side ch ge</td>
<td>0xff</td>
<td>0000111111111111</td>
<td>2</td>
</tr>
</tbody>
</table>

The appropriate mask to extract the information is shown both in hex and binary formats.

The rest of the events depend on what EFF write out options are on:

If the "writeget" [4] (germanium time) or "writegef" [5] (trap + lowres signals) are set:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Hex Value</th>
<th>Binary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ge_time 12/13 bit[5] ge time</td>
<td>0x1ff</td>
<td>0001111111111111</td>
<td></td>
</tr>
</tbody>
</table>

If "writegef" [5] (trap + lowres signals) is set:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Hex Value</th>
<th>Binary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ge_trap 12 bit trap corr</td>
<td>0xff</td>
<td>0000111111111111</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ge_low 12 bit low res ge</td>
<td>0xff</td>
<td>0000111111111111</td>
<td></td>
</tr>
</tbody>
</table>

If "writebgo" [6] (clean bgo) is set:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Hex Value</th>
<th>Binary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>bgo_time 12 bit bgo time</td>
<td>0xff</td>
<td>0000111111111111</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>bgo_low 12 bit bgo energy</td>
<td>0xff</td>
<td>0000111111111111</td>
<td>3</td>
</tr>
</tbody>
</table>
HAEMOLYSED BLOOD
(HAEMOGLOBINS HAVE BEEN LIBERATED FROM RED BLOOD CELLS)

SERUM
(LIKE PLASMA BUT NO CLOTTING FACTORS)

CELL CONCENTRATE
(NO PLASMA)

WHOLE BLOOD

![Graph showing relative 3γ/2γ yield for various blood samples.

RELATIVE 3γ/2γ YIELD
THE FACT THAT THEY VARY IS ENCOURAGING – AT LEAST THE METHOD IS SENSITIVE TO SOMETHING.

OXYGENATION IS NOT THE ONLY FACTOR. THERE ARE COMFOUNDING FACTORS PERTURBING THE 3-QUANTA YIELD.
THREE-QUANTAS STUDIES:
DIFFICULTIES & CHALLENGES

1. PHYSICAL MEASUREMENT
 - RARE EVENTS NOT EASY TO DETECT
 - DIFFICULT TO PICK OUT FROM COMPTON-SCATTERED BACKGROUND (even with Compton-suppression)
 - DEAD TIME

2. MONTE CARLO
 - INTERACTION
 - CROSS-SECTIONS
 - CHEMICAL BINDING (same elemental composition bound/structured differently causes different 3-quanta yields – THE SAME PROPERTY WHICH LENDS THE METHOD MOLECULAR IMAGING PROSPECTS)
DETECTION OF $3\gamma/2\gamma$ YIELDS

SLOW COMPONENT
ORTHO-POSITRONIUMS (3γ)

FAST COMPONENT
FREE POSITRONS

511 keV PEAK
SHORTENED COUNTS SPREAD TO LOWER ENERGIES

BESIDES TRIPLE COINCIDENCE

511-Ann.Rad.

$22\text{Na}(2.6 \text{ yr.})$

$65 \text{ cm}^3 \text{ Coaxial Ge(Li)}$

$0.5 \text{ g/cm}^2 \text{ Cd sandwich}$

25 cm

$11-22-1$
Fig. 1. Gamma spectra from the FDG source with the reference sample in place: (I) all hits from all detectors; (II) clean hits from non-outlying detectors only; (III) time-gated clean hits from non-outlying detectors only. The energy axis has been truncated.

Characteristic x-rays from bismuth
FILTERED THE LEAST: FULL-ENERGY PHOTO-PEAK & SUMMED PEAK

Fig. 2. Variation in filtering effects with energy: fractional difference in counts per energy bin (I) with and without Compton-suppression; (II) before and after time-gating.
STAGES OF FILTERING

1. COMPTON-SUPPRESSION
2. COINCIDENT TIME GATING
3. ANGULAR CORRELATION
4. ENERGY & MOMENTUM CONSERVATION

In our attempt to clean-up the spectra to single-out three-quantum counts, we inevitably remove the counts we want, and obtain the counts we do not want.

Ore & Powell (1949)
Adkins (1983)
FURTHER WORK

TO SUPPRESS OR NOT TO SUPPRESS

FROM COMPTON-SUPPRESSION TO GAMMA-TRACKING

To include Compton-scattered counts instead of removing them

Next-generation large-array detectors (AGATA and GRETA)

Great idea but is it going to work?
POSITRON EMISSION TOMOGRAPHY NEEDS A RETHINK

PET SO FAR
180° 511 keV photon pairs
TIME-OF-FLIGHT PET

ANNIHILATIONS IN-FLIGHT\(^1\)
THREE-QUANTAS\(^2\)

Surrey’s attempts in stepping out of the ‘comfort zone’:
\(^1\) Chin & Spyrou 2007 NIM-A 580:481
\(^2\) Latest work: this and Alkhorayef’s presented in Cancun and Lisbon
Positron about to decay in flight

Resulting photons

Chin & Spyrou 2007 Nucl Instr Meth A 580:481

NOT 0.511
NOT BACK-TO-BACK!